Module Title	Sport and Exercise Nutrition
Level	5
Reference No.	ASC_5_429
Credit Value	20 CAT points
Student Study	Total Learning Hours: 200
Hours	Contact hours: 45
	Lecture / tutorial 36
	Practical 9
	Student managed learning hours: 155
Pre-requisite	Core Studies (Level 4)
learning	Nutrition Health and Disease (Level 4)
Co-requisites	None
Excluded	None
Combinations	
Module	Adam Cunliffe
Coordinator	
School/Division	Applied Science/Human Sciences
Short	This module will develop the student's knowledge and understanding of the
Description	nutritional requirements of athletes and the metabolic responses and
	adaptations to acute and chronic exercise. In particular it will focus on fuel
	athlete types' will be explored. Evidence supporting the use of putritional
	strategies in optimising performance and training will also be referenced
Aims	1. To illustrate the effects of acute and chronic exercise on metabolic
	processes.
	2. To develop an appreciation of the important links between exercise,
	energy needs and energy generation and utilization.
	3. To develop a critical understanding of the role of macronutrients in
	supporting and optimising training and performance.
	body composition assessment, dietary analysis prescription and energy
	expenditure during exercise.
Learning	1. Explain the acute effects of different forms of exercise on metabolism.
Outcomes	2. Explain the chronic effects of different forms of exercise on
	metabolism.
	3. Develop an ability to evaluate the relationship between fuel utilization
	4. Evaluate the role of nutrition and recommend nutritional strategies to
	optimize the response to acute and chronic exercise.
	5. Understand key guidelines in relation to nutrition and how to collect
	nutritional information.
	6. Reflective skills.
Employability	This module contains specification content required by the register of exercise

	professionals (REPS) L2 and L3 Gym Instructor course in the areas of nutrition,
	exercise and fitness knowledge, cardiovascular and respiratory systems,
	muscular and neuromuscular systems, training principles and practices.
Teaching &	Teaching strategies employed within this module require students to work
Learning	effectively in both small groups and independently, to synthesise and apply
Pattern	knowledge provided in keynote lectures. A variety of teaching resources will be
	utilised depending upon the subject being considered. Students are expected
	to participate in seminar discussions for the benefit of all group members.
	There will also be a series of laboratory based sessions.
Indicative	 Non-oxidative and oxidative energy pathways;
Content	Catabolic pathways – lipolysis and proteolysis;
	3. Anabolic pathways – glycogen, protein and lipid synthesis;
	4. Metabolism during and after acute endurance and high intensity exercise;
	5. Chronic metabolic adaptations to different forms of exercise;
	6. Role of different macronutrients in optimising performance and training.
	7. Analysing athlete diets, body composition and energy expenditure. Designing dietary an
	nutritional interventions for athletes.
Assessment	Case study (50%) The analysis and design of a dietary intervention for a pre-
1.000001110110	specified athlete (1500 words)
Elements and	$\frac{1}{1}$
Weightings	Laboratory report (50%) - write up of a laboratory experiment (1500 words)
Indicative	Hargreaves M · & Spriet L · (2006) Evercice Metabolism 2 nd Ed. Human Kinetics
Sources	Publishers Ltd: Chanaign III LISA
Sources	rublishers Ltu, Chapaigh, III, USA.
	Jeukendrup, A.E., & Gleeson, M. (2004) Sport Nutrition – An Introduction to
	Energy Production and Performance Leeds, UK, Human Kinetics.
	Manore, M.M. & Thompson, J. (2000) Sport Nutrition for Health and
	Performance. Human kinetics, Leeds, OK.
	McArdle W D, Katch F, Katch V.L. (2009) Exercise Physiology: Energy, nutrition
	and human performance 7 th Ed. Philadelphia. Lippincot, Williams and
	Wilkins.
	McArdle WD, & Katch V.L., (2012) Sport and Exercise Nutrition 4ed.
	Philadelphia. Lippincot, Williams and Wilkins.
Attendance	Minimum attendance is 80% of all sessions.